Reflections on a crisis – opportunities for a teaching overhaul

Written by Angela Attwood and Olivia Maynard, with reflections from Marcus Munafò

Beyond the immediate impact on people’s lives and livelihoods, the SARS-CoV-2 pandemic has caused a great deal of disruption in how we work. The burden on academics, particularly with respect to teaching, has been considerable. But are there positives that we can take from this situation?

Academia can be surprisingly conservative – we have ways of working that we are reluctant to change. While undergraduate courses may have been tweaked in response to student feedback, they remain largely unchanged from the courses available in the 1990s. Yet over this same period the ways that young people digest knowledge has changed radically. Today’s undergraduates are digital natives, used to receiving content in very different (and more flexible) ways.

Once we knew the pandemic would force us to move to online teaching, and that we’d be delivering our third-year optional psychology unit on ‘Drug Use and Addiction’ online, we knew we had to take the opportunity to completely overhaul our course and update our pedagogy.

We started by identifying key principles that would inform the redesign of the course. As we outline below, we aimed to: ensure clarity, maximise engagement, facilitate presence, tackle the “valuable but missable” problem of live sessions, and be flexible.

Our redesigned course followed a flipped lecture format, whereby asynchronous material was delivered ahead of an online live (synchronous) session. This flipped approach is known to have pedagogical benefits over traditional didactic lectures. This was a substantial structural change to our course, but throughout we tried to avoid reinventing the wheel! Rather we wanted to create a course that was pedagogically sound, based on current evidence, and shaped by our key principles.

The feedback so far from students has been overwhelmingly positive (perhaps even more so than in previous years!) and we strongly believe our principles have been key to the success of the course. We therefore want to expand on each principle and share what we have learned so far, in case this is helpful for others also faced with the daunting task of complete course redesign.

Principle 1: Ensuring clarity

More than anything else, it was essential that students understood what they needed to do and why they need to do it.

What we did:

  • Created a consistent structure. We had folders for each sub-unit (previously lectures, but “sub-unit” better captures the granular nature of the content). Released weekly, these contained all teaching material (e.g., pre-recorded mini “lectures”, reading, etc.) for that week.
  • Ensured requirements were clear. Each sub-unit started with a “roadmap”, including a summary of the sub-unit, intended learning outcomes, and an ordered list of tasks for completion, with an estimate of the time required for each.
  • Clarified the importance of each task. We labelled these as either as CORE or RECOMMENDED. This allowed students flexibility, as they could choose to leave or return to RECOMMENDED items.
  • Provided guidance notes for all academic reading (i.e., journal articles, book chapters). This included an overview (why it was chosen), any focussed reading (particularly useful for long review articles), and key “take home” messages *.

* This was an unexpected “win” as our discussion board inbox was significantly quieter this year. Many questions in previous years asked how to make notes on or read journal articles in the context of the course. The number of these questions received at the point of writing is zero!

Example sub-unit structure from one of the “roadmaps”

Student feedback

“The structure for the sub-units is SO helpful, really like how it tells you how much time each activity is going to take.”

“The pre-recordings are a very good length, and the little summary of everything we are doing for the sub-unit with the timings is incredibly helpful.”

Principle 2: Maximising engagement

Students are spending more time working at home, due to local or national restrictions, or limits on campus study space. This means that as well as material needing to be high quality, it also needs to be interesting and engaging. We focussed on material that was digestible, offered various methods of delivery, and gave students flexibility in how they structured their own learning.

What we did:

  • Lectures recorded into bitesize chunks (ideally of no more than 20 minutes each). This reduced the burden associated with listening to each lecture and provided students with more flexibility when it came to organising their learning.
  • Academic reading was supplemented with additional materials (e.g., videos, podcasts, websites). This allowed students to explore areas of personal interest more deeply if they wished to.
  • Student-led activities (e.g., interview their friends, own literature searches, evaluate websites, mini-experiments). This provided opportunities for students to again explore areas of personal interest more deeply, in a range of different ways.
  • Student choice (e.g., choosing a drug they were interested in, and activities that could be aligned to build a “portfolio” of materials specific to their drug of choice). This fed through to assessment where they could answer the question on any drug they wanted.

Student feedback

“I really like the sub-unit structure. As someone who doesn’t learn best unless there is a range of different learning stimuli in combination (e.g., lecture content, reading, visual cues like videos/stats graphs etc.) I find the subunits are so interesting and they help me to focus my energy onto the task at hand and stops me getting distracted.”

“I really enjoyed the variety and the fact it wasn’t just hours and hours of straight lectures which can get really dull! :)”

Principle 3: Facilitating presence

Working through material posted on a website can be isolating. It’s important to create a sense of community in online settings.

What we did:

  • Used software that enabled student interaction and reflection throughout the week (e.g., Padlet, Mentimeter). We made sure at least one of these was present in each sub-unit, and encouraged students to communicate with each other as well as ourselves.
  • Recorded “reflection” lectures between ourselves (lecturers) or invited guests. This ensured that students saw our faces during the week, as well as a range of different contributions from the wider academic community.
  • Held weekly live sessions on Zoom to reflect on the week’s teaching. Although not strictly necessary, we both attended all live sessions to maximise our interaction with the students, and encouraged students to have their webcams on during these sessions (about half did).
  • Held weekly live drop-in sessions (in addition to core live sessions) to answer questions and chat. This provided further opportunities to interact directly with ourselves and other students in real time.
  • Used Zoom functions in live sessions – including breakout rooms – to give students a chance to talk to each other. We also used Zoom polling to ensure that all students had an opportunity to contribute, even if they didn’t feel like talking.
  • Emailed the cohort regularly with additional opportunities, talks etc. relevant to the course. This created a sense of the wider academic community that they are part of, and the ongoing research activity relevant to the course.

Student feedback

“I really enjoyed the smaller rooms when on Zoom to talk to others in small groups of 5. Found it a lot easier to talk in these smaller groups than larger ones. I also liked the multiple-choice questions that you can present on the screen to see how everyone else is doing in terms of the sub units and the current work.”

Principle 4: Tackling the “valuable but missable” problem for live sessions

One of the biggest risks to any live session are technical issues. This created a “valuable but missable” paradox – we didn’t want to deliver core material during live sessions (so they could be missable if a student had Internet issues), but the sessions also had to be seen as valuable (or students might not attend!)

What we did:

  • Constructed live sessions to be “skill building” (e.g., essay planning, argument building, debating skills, evidence synthesis and critique). These were designed to be valuable across the course as a whole, but any one could be missed with limited impact on assessment.
  • Created different formats for the live sessions to make sure these were seen as valuable, but also interesting and engaging (e.g., discussion on how to answer a mock essay question, multiple choice quiz, hot topic debates).

Student feedback

“I really liked the quiz session last time, it made me think about the information I absorbed in the subunits, but equally I loved the debate. Practice essay questions are also very useful because I am struggling with planning my essays in general.”

“I think the live sessions have been very beneficial in a number of ways related to our essays, overall course understanding and guiding areas for reading.”

Principle 5: Being flexible (we are learning too!)

Co-design with end-users is vital for the best end-product. We allowed time to ask for student feedback, and space to respond to it.

What we did:

  • Created polls that allowed students to vote on upcoming content (e.g., what question would be discussed in live sessions; what format of live sessions they find most helpful).
  • Kept aspects of the course only partially developed (e.g., live session format) so that we had scope to be responsive to feedback.
  • Continually asked for student feedback, via short polls and surveys on specific questions (e.g. ‘What should the format of the live sessions be?’, ‘How long should we stay in breakout groups for’) as well as asking for stop-start-continue feedback on the course as a whole, via an online survey that students could complete at any point during the course.

So, what does the future hold?

While we all hope ‘normal’ life will resume soon, the reality is that the world will not be quite the same post-pandemic. Much like many businesses that are planning to retain positive elements of home working, we should be open to retaining elements of our new ways of teaching. The crisis of the pandemic has created an opportunity to fundamentally overhaul and modernise the way that we teach that would have been unthinkable in a ‘normal’ year. And it seems to have worked – to quote a student, “It’s better than face to face teaching” (emphasis added).

We agree that these new ways of teaching are better – not just for students but for academics too. The recorded asynchronous material will stay current for 2 or 3 years (and perhaps longer for more introductory courses), meaning that if we retain this overall structure, our workload will be less next year. At the same time, many of the various synchronous elements can return to a face-to-face format, ensuring we spend more time in small groups, doing interactive work which both students and academics (certainly ourselves) find more engaging and fulfilling.

While our model is certainly not perfect – it had to be developed rapidly under considerable pressure – it’s a start, and offers a glimpse of the future.

The House of Commons Science and Technology Committee reports on e-cigarettes

Written by Jasmine Khouja, PhD Student, Tobacco and Alcohol Research Group

Today sees the publication of a report on electronic cigarettes (e-cigarettes) by the House of Commons Science and Technology Committee. This compiles evidence from over 100 pieces of written submissions and five oral sessions, and highlights key issues around reducing harm, promoting smoking cessation and effectively regulating e-cigarettes. Since the report is quite long, we’ve tried to extract the main messages.

The report takes a relatively positive stance on e-cigarettes, encouraging use for smoking cessation and suggesting a more accepting approach to e-cigarettes in public spaces. This is in contrast to other countries, such as Australia, where a ban is in place due to the lack of long-term research on the health impact of using e-cigarettes.

Reducing harm

The general consensus from a variety of sources is that e-cigarettes are less harmful than combustible cigarettes. However, a frequent theme is that this does not mean that e-cigarettes are ‘safe’, and the report is careful to emphasise that e-cigarettes are not completely harmless. The relative harm of heat-not-burn tobacco products compared to combustible cigarettes is less clear. There is a lack of independent evidence as the majority of data on the safety and emissions of these product has come from Philip Morris, a major tobacco company.

The long-term effects of using e-cigarettes are currently unknown. It is difficult to assess the comparative harm of e-cigarettes without also measuring the effects of prior smoking, since there are very few long-term e-cigarette users who have never smoked. Exposure to second-hand e-cigarette vapour has been similarly difficult to assess, but since potentially harmful compounds emitted are present only at very low levels second-hand vapour is unlikely to be harmful.

E-cigarettes have become a popular tool for quitting smoking and an estimated 16,000 to 22,000 people who would not have quit using alternative products or willpower alone have successfully quit each year by using e-cigarettes. Although these figures are promising, there is a lack of high-quality evidence from randomised control trials showing how effective e-cigarettes are when quitting smoking. Other evidence has been inconclusive due to the low quality of some studies.

Despite fears that e-cigarettes may act as a ‘gateway’ to smoking, current evidence does not show that using e-cigarettes causes people to start smoking. Although there is a link between e-cigarette use and subsequent smoking initiation, very few never smokers regularly use e-cigarettes, so any causal link would have a limited impact on smoking rates.

Smoking cessation

Providing e-cigarettes on prescription could encourage smokers to try e-cigarettes without barriers such as money as well as give them more confidence in the product being less harmful than cigarettes. The report concludes that e-cigarettes should be available to those in NHS mental health services given high rates of smoking in this group.

NHS England were unable to provide evidence for how they were addressing this issue. They were unable to provide a representative because there is no one individual responsible centrally with ‘oversight’ of e-cigarette policies across NHS mental health trusts. The report criticises this, stating it was concerning and that a position should be created as a matter of urgency.

E-cigarettes are generally prohibited in closed spaces such as workplaces, public transport and restaurants and vapers are usually encouraged to vape outside within designated ‘smoking’ areas. Since second-hand vapour is unlikely to be harmful, these policies may be more harmful than beneficial; frequently exposing vapers to cigarettes and cigarette smoke may increase the likelihood that they will relapse to smoking.

Regulation

E-cigarettes are currently regulated under the Tobacco Products Directive (TPD; see our previous blog) if you want to learn more about these regulations). As part of this directive, the Medicines and Healthcare products Regulatory Agency must be notified before any e-cigarette or e-liquid can be sold in the UK.

Four key criticisms of the TPD were identified in the report: i) unnecessary limits on nicotine strength of refill liquids which may lead to failed quit attempts, ii) unnecessary tank size restrictions which may lead to failed quit attempts, iii) blocking advertising the relative harm-reduction of e-cigarettes which may discourage quit attempts, and iv) the ineffective notification scheme for e-cigarette ingredients which slows innovation.

Some TPD regulations are optional and give freedom to governments to be as restrictive as they feel necessary. Scotland has been more restrictive than England in their regulations by banning certain advertising of vapour products. Currently, health claims are banned from all media advertising of e-cigarettes without a medical license (of which none is currently available). The Advertising Standards Authority is currently reviewing the legislation on e-cigarette advertising and health claims and are considering allowing this in the future.

Unsurprisingly, there is uncertainty about the future regulation of e-cigarettes due to Brexit. Regulation of e-cigarettes may change after leaving the European Union and it is unclear what these changes may be or what potential impact increased flexibility in regulating e-cigarettes could have.

Conclusions

The report is comprehensive and raises some interesting questions particularly about the lack of NHS involvement in developing strategies for smoking cessation that utilise e-cigarettes. It will be interesting to see if the NHS responds to these criticisms by taking action. I am also interested to see what Brexit will mean for the regulation of e-cigarettes in the UK, given the criticisms of TPD regulations.

The full report can be accessed here: [The House of Commons Science and Technology Committee reports on e-cigarettes]

 

Why I took part in the “Preregistration Challenge”

By Sarah Peters

The preregistration of study protocols has a long history in clinical trials, but is a more recent innovation in many other areas. The hope is that it will help counter the “reproducibility crisis” in psychological science – the failure of many published findings to replicate reliably. Here I discuss my experience with the Open Science Framework “Preregistration challenge”, and argue for more widespread adoption of preregistering reports.

There is an ongoing methodological crisis in psychological science – the reproducibility crisis refers to the failure of many scientific findings to be replicated. The Reproducibility Project, a recent initiative led by Professor Brian Nosek at the University of Virginia, aimed to identify the scale of this crisis. A large collaboration between 270 project members reran 100 published psychological experiments, and found that just 36% of the initial findings were replicated. Similarly, some classic textbook experiments have proven difficult to replicate, and publication bias – whereby positive findings are more likely to be published and negative findings to be dismissed – plagues the field.

Given this, scientists are exploring how to improve the way we conduct research and thereby improve the quality of what we produce. One suggestion is to preregister our research question, methods and analysis plan in advance of data collection. It is hoped that public preregistration will limit analytical flexibility and post hoc hypothesising, thereby improving the transparency and robustness of research findings.

Curious about the benefits of preregistration, and to see how it differed from the way I’d previously conducted my research, my colleagues and I published a preregistration for a recent study on Open Science Framework (OSF). We were interested in whether Cognitive Bias Modification, a psychological intervention designed to shift the emotional interpretation of faces, would impact clinically-relevant outcomes. We also entered the study into OSF’s (ongoing!) Preregistration Challenge, which offers the chance to win a $1,000 prize to 1,000 researchers who go from preregistration to publication.

Preregistering our study did require a greater time commitment prior to running it, but thinking about our predictions, design, and analyses meant that we could spot any potential issues and improve our experimental design before we collected data (i.e., before it was too late!). As a preregistration is public and cannot be changed after it’s published, it forced us to think more carefully about our decisions. For example, thinking more carefully about whether our data would truly answer our question made us wonder whether the emotional biases we wanted to study might be more prominent when an individual is under stress, so we decided to include another task to measure this. Also, by knowing which statistical analyses we would conduct before recruiting participants we could ensure that our study was adequately powered and would meet the assumptions of the planned analyses.

Initially I was concerned that this approach could be limiting. What if we found something interesting that we hadn’t expected and wanted to run additional analyses to probe it? But a preregistered report doesn’t prevent that – it simply means that you would (honestly and transparently!) report those analyses as exploratory. This protection against HARKing (hypothesising after the results are known) is important; separating analyses as planned versus exploratory can prevent overconfidence in weaker findings and the publication of attractive, but uncertain, positive findings.

Following data collection, we went back to our preregistration. It was here that our earlier time investment paid off; once our data were cleaned we could immediately run our planned analyses, and much of the manuscript writing (introduction and methods) was already done. We also ran a number of exploratory analyses, such as whether our results were moderated by participants’ anxiety scores. We subsequently published our findings in the academic journal Royal Society Open Science, and were thrilled to receive one of the latest $1,000 Preregistration Challenge prizes for bringing our study from preregistration to publication!

While interpreting findings and making discoveries is an important aim of scientific research, it is just as important to continuously scrutinise the scientific method. As a scientist, there is no question that seeing data can influence my decisions and interpretations. However, the adoption of preregistration can eliminate this, make the process easier in the long term, and improve research quality overall.

Professor Nosek and other members of the Reproducibility Project argue that, “Progress in science is marked by reducing uncertainty about nature”. But, if scientific findings have not or cannot be replicated, we can’t be certain that they exist. Preregistration is a simple change to the way we do research that can help to halt the reproducibility crisis and produce effective and credible science.

Read more about how to take part in the Preregistration Challenge here.

See Peters et al.’s preregistration here, and the published study here.

Sarah Peters can be contacted via email at: s.peters@bristol.ac.uk.

New alcohol guidelines: what you need to know

by Olivia Maynard @OliviaMaynard17

This blog originally appeared on the Mental Elf site on 9th Febraury 2016.

Last month the UK Chief Medical Officers (CMOs) published new guidelines for alcohol consumption. These are the first new guidelines since 1995 and are based on the latest evidence on the effects of alcohol consumption on health.

The guidelines provide recommendations for weekly drinking limits, single drinking episodes and recommendations for pregnant women, drawing heavily on the Sheffield Alcohol Policy Model, which uses the most up to date evidence on both the short- and long-term risks of alcohol.

What are the new guidelines?

Guidelines for weekly drinking

For the new weekly drinking guidelines, the CMOs recommend that:

  • It’s safest for both men and women to not regularly drink more than 14 units of alcohol per week;
  • It’s best to spread these units over 3 days or more;
  • Having several drink-free days each week is a good way of cutting down the amount you drink;
  • The risk of developing a range of illnesses increases with any amount you drink on a regular basis.

There are two key changes here from the guidelines we’ve been used to:

First, there’s no difference in recommendations for men and women. This is because there is increasing evidence that although women are more at risk from the long-term health effects of alcohol, men are more at risk from the short-term effects of drinking (they’re more likely to expose themselves to risky situations while drinking).

Second, there is an explicit statement that there is no ‘safe’ level of alcohol consumption. Over the past 21 years, the link between alcohol and cancer has become much clearer. For example, we now know that while the lifetime risk ofbreast cancer is 11% among female non-drinkers, the lifetime risk for a woman drinking within the new guidelines is 13%. A woman drinking over 35 units a week increases her risk of breast cancer to 21%.

In their report, the CMOs are also at pains to point out that the evidence supporting alcohol’s protective effects on ischaemic heart disease is now weaker than in 1995. Furthermore, any potential protective effect of alcohol is mainly observed among older women at very low levels of consumption. Previously some have used this to claim that drinking is better than abstinence – the new guidelines refute this.

The new guidance says it's safest for men and women to drink no more than 14 units each week.

The new guidance says it’s safest for men and women to drink no more than 14 units each week.

Guidelines for single drinking episodes

The new guidelines are the first to provide guidance on drinking on single occasions, recommending drinkers:

  • Limit the total amount consumed on any occasion;
  • Drink slowly, with food and alternating with water;
  • Avoid risky places and activities and ensure they have a safe method of getting home.

These new recommendations reflect the fact that many alcohol consumers may drink heavily on occasion and provide guidance to avoid the risk of injury and ischaemic heart disease which increase with heavy drinking.

Heavy drinking episodes are linked with a higher risk of injury.

Heavy drinking episodes are linked with a higher risk of injury.

Guidelines for drinking during pregnancy

The new guidelines suggest that:

  • The safest approach for pregnant women is not to drink alcohol at all, to keep risks to the baby to a minimum.
  • Drinking during pregnancy can lead to long-term harm to the baby, with the risk increasing with the more alcohol consumed;
  • The risk of harm to the baby is likely to be low if a woman has drunk only small amounts of alcohol before she knew she was pregnant or during pregnancy.

The CMOs report that while the evidence on the effects of low alcohol consumption during pregnancy remains ‘elusive’, taking a precautionary approach is most prudent when it comes to a baby’s long term health. However, given the elusive evidence, the guidance is also careful to note that mothers should not be too concerned if they have drunk early in their pregnancy, as this kind of stress may be even more harmful to the developing baby.

Pregnant women are advised not to drink alcohol at all.

Pregnant women are advised not to drink alcohol at all.

A note on risk

These recommendations are based on a level of alcohol consumption which confers a 1% lifetime risk of death from alcohol. Their purpose is therefore tominimise risk from alcohol, rather than eliminate it. Indeed, the guidelines explicitly state that there is no safe level of alcohol consumption. So what does a 1% lifetime risk mean and how does this compare to other health behaviours?

Lifetime mean risks

  • Being killed through BASE jumping (0.3%);
  • Being killed in a car accident (0.4%);
  • Being diagnosed with bowel cancer from eating three rashers of bacon every day (1%);
  • Dying from an alcohol related disease, if drinking within the new guidelines (1%);
  • Smokers dying from a smoking related disease (50%, although new estimates suggest that this may be as high as 67%).

Put in the context of smoking, the risk posed by drinking within the new guidelines seems tiny (although it’s still more risky than BASE jumping!) However, it’s important to note that alcohol consumption and smoking are quite different. Alcohol consumption is perceived as normal in our society and is much more prevalent than cigarette smoking. By contrast, the acceptability of smoking is reducing and unlike social alcohol consumers, smokers are constantly being told to quit smoking.

This 1% risk level is that which is deemed ‘acceptable’ by the CMO. However, everyone will have a different ‘acceptable’ level of risk, which depends in part on how much pleasure is obtained from drinking. While some will think that increasing their risk of death from alcohol to 5% is acceptable, others will not accept any risk and will use these guidelines to cut out alcohol completely.

Criticisms of the new guidelines

As expected, the ‘nanny state’ criticism has been bandied around in pubs, on message boards and on social media since the publication of these guidelines. Others claim that these new guidelines are simply scaremongering. However, it’s important to remember that these are recommendations, not rules.

The last word must go to CMO Professor Dame Sally Davies, who addressed this criticism by saying that:

What we are aiming to do with these guidelines is give the public the latest and most up- to-date scientific information so that they can make informed decisions about their own drinking and the level of risk they are prepared to take.

What do you think? Are these new guidelines useful? Will they help reduce alcohol related harm?

What do you think? Are these new guidelines useful? Will they help reduce alcohol related harm?

Links

Primary paper

Department of Health (2016) Health risks from alcohol: new guidelines. Open Consultation, 8 Jan 2016 (Consultation closes on 1 April 2016)

Department of Health (2016). Alcohol Guidelines Review – Report from the Guidelines development group to the UK Chief Medical Officers.

Other references

Centre for Public Health (2016). CMO Alcohol Guidelines Review – A summary of the evidence of the health and social impacts of alcohol consumption. Liverpool John Moores University.

Centre for Public Health (2016). CMO Alcohol Guidelines Review – Mapping systematic review level evidence. Liverpool John Moores University.

Department of Health (1995). Sensible drinking: Report of an inter-departmental working group.

Photo credits

 

A behavioural insights bar: How wine glass size may influence wine consumption

by Olivia Maynard @OliviaMaynard17

Now that the festive season is almost upon us, I’ve been wading through the list of jobs I’ve been putting off for longer than I can remember, with the hope of starting afresh in 2016.

One of these jobs is wrapping up some of the studies I’ve been running this year, tidying up the data files and deciding what to do with the results. Obviously it’s best practice to write up all studies for publication in peer-reviewed journals, but sometimes this isn’t possible straight away (for example, when we’ve collected pilot data which will inform larger studies or research grants), although journals specifically for pilot and feasibility work do exist. However, it’s still important to share the findings, at the very least to prevent other research groups from running exactly the same pilot study (avoiding the file drawer effect).

The pilot study I’m trying to wrap up was conducted in September this year and is worth reporting, not only because the research is interesting, but also because the method of data collection was novel.

In December 2014 we were approached by the Behavioural Insights Team (BIT), who asked whether we’d be interested in running an experiment at their annual conference. Alongside a star-studded list of speakers, the BIT had planned to demonstrate to conference delegates the power of behavioural insights, by running a series of mini-experiments throughout the conference. We were asked to contribute, not only because I had previously worked in the BIT as part of a placement during my PhD, but also because of TARG’s track record in running behavioural experiments to influence alcohol consumption, both in the lab and in the ‘real-world’.

glassThe team asked us to run an experiment in the Skylon bar in the Royal Festival Hall – the venue of the conference drinks reception. After an initial assessment of the bar (yes, this is a tough job!) and discussing various possible experiments we could conduct, we finally decided to examine the impact of glass size on alcohol consumption. While considerable previous research has shown that plate size is an important driver in food consumption, and we have shown that glass shape (i.e., curved versus straight) influences alcohol consumption, there is very little research on the impact of glass size on alcohol consumption. Larger wine glasses are increasingly common and these may increase wine consumption and drinking speed by suggesting larger consumption norms to consumers, or by tricking consumers into thinking there’s a smaller amount in the glass than in a smaller glass which is equally full.

The primary aim of this pilot study was to determine the feasibility of implementing a glass size intervention study in a real-world drinking environment in order to inform future studies in this area.

Method

Prior to starting the study, as with every TARG study, we published the protocol online on the Open Science Framework. Depending on the side of the bar they were stood in, delegates attending the drinks reception were provided with either a small or a large wine glass, each of which was filled to the same volume. Every 15 minutes we counted the number of delegates on the two sides of the bar and every hour (for three hours) we counted the number of empty wine bottles on each side of the bar. We calculated the average volume of wine consumed per delegate each hour and then compared these between the two groups.

Results

From a feasibility point of view, the study worked as well as expected. Follow-up interviews with the manager of the bar indicated that bar staff enjoyed the process of participating in a study and were happy to participate again in future studies.

However, because we were conducting this in the real-world, rather than in our carefully controlled laboratory environment, we encountered a few logistical challenges. Here are the key points we learned from running this pilot study:

  1. In the real-world, there’s a necessary trade-off between collecting the data and not disrupting normal behaviour

bottles

Ideally we would have counted the number of empty bottles more frequently than every hour in order to get a more accurate measure of how much was consumed by the delegates. However prior to the start of the study, the bar manager suggested that this would interfere with their service and the bar staff reiterated this after the study had finished. As the bar staff were vital to the success of this pilot study, we didn’t think it was appropriate to push for more data collection than they felt comfortable with.

  1. Complete control of the environment isn’t possible in the real-world

controlkey

To prevent delegates from moving between the two sides of the bar we placed physical barriers between them, such as sofas, plants and lamps. However, inevitably, some delegates who wanted to ‘work the room’ at what was essentially a networking event did make their way past the barriers we set up. Other than instructing the waiters to replace the glass of those who had moved sides with the glass size appropriate for the side of the bar they were now in, there was very little we could do about this, short of frog-marching delegates back to their original side (which we thought wouldn’t go down very well on this occasion!)

  1. Accurate enforcement of study conditions is more difficult in the real-world

pouring

If we had conducted this study in the laboratory, we would have randomised participants to receive one of two glass sizes and carefully poured the exact volume of wine into their glass. In this real-world study, however, we had to rely on the waiters to accurately pour the wine into the glasses. Although highly trained, the waiters may also have fallen foul of the visual illusion the different glasses present (an effect which has been shown in previous real-world experiments). Future studies could monitor waiter pouring behaviour before and during the study.

  1. Studies in real bars have some other unexpected challenges…

full glassess

The BIT had asked that we present the results at 9am the following morning, allowing a nine hour turnaround from the end of the study to data presentation. This time pressure was not helped by the large quantities of complimentary champagne being served at the event, which considerably slowed down data entry and analysis at midnight!

Despite this substantial challenge, the results of the study were presented the following morning.

These data suggested that there was no difference in volume of wine consumed between the groups drinking from larger glasses and those drinking from tablesmaller glasses. As this study wasn’t powered to detect a meaningful difference between the two groups, we weren’t really surprised by this finding. However, these pilot data, along with the lessons learned from conducting the study will be used to inform our future research studies and grant applications.

And there we have it – another pilot study out of the file drawer and another item crossed off my ‘to-do’ list.

I’d like to thank the entire Behavioural Insights Team, in particular Ariella Kristal and Gabrielle Stubbs, for making this study happen, Carlotta Albanese from the Skylon bar and David Troy and Jim Lumsden from TARG for helping with all the data collection (and data entry at midnight).

Can we use the inhalation of 7.5% CO2 as a model to probe cognition and behaviour in anxiety?

by Alex Kwong @tskwong

A lot of the work conducted in the Tobacco and Alcohol research group (TARG) mainly focuses around tobacco and alcohol research (funny that…). However, when we’re not getting people intoxicated in the name of science (yes we do that), we’re also carrying research ranging from body perception, to emotion recognition and anxiety research. The latter is something that I’ve focused on, and to cut a long story short, we make people anxious by making them breathe in air enriched with carbon-dioxide (CO2), about 7.1% more than what you would normally breathe. Once people are anxious, we assess them on a number of outcomes, some clinically relevant, some more practical and applied.

Needless to say, breathing in about 7% more CO2 for a period of up to 20 minutes should make you anxious for a number of reasons (to be explained later on). But can breathing in a gas that is enriched with CO2 act as a viable model for anxiety, capable of assessing cognition and behaviours that are susceptible to anxiety? In this post I’ll explore some of the previous research utilising this model, and look at some of the future directions of the model and how it could be used as a training tool to help improve performance under anxiety. By then, hopefully you’ll agree with me that the model is good at experimentally inducing anxiety, and you’ll sign up for all our studies.

Possibly the most influential research on the inhalation of CO2 has been by Bailey et al. (2005) and work from David Nutt’s former lab in Bristol. They found that breathing in CO2 enriched gas for a period of 20 minutes decreased positive mood (feelings of happiness and relaxation) and increased negative mood (worry and fear). Since then, a plethora of research has supported this, and also found that the model induces symptoms such as sweating, increased heart rate and blood pressure and hypoxia, all common in generalised anxiety disorder (GAD). Interestingly, other research has found that we can actually reduce these responses to the CO2 model by giving people anxiolytic drugs. As such, the model of 7.5% CO2 has been considered a validated model of human anxiety induction that is generalisable to anxiety disorders such as GAD.

But why does breathing in a gas that is enriched with CO2 cause these sort of feelings? One explanation is that breathing in CO2 causes chemoreceptors to mislead the body into thinking that it is starved of oxygen. This leads to fear like responses, as well as increased breathing rates and higher blood pressure and heart rate. If you’ve ever had the pleasure of taking part in one of these CO2 experiments, you’ll likely agree that these things happen. I’ll just stress at this point that effects of the gas are transient and usually disappear quickly after the inhalation. Some people even enjoy the experience, so I hope I’m still selling this to you.

CO2 set-up
A typical experimental set up with the CO2.

So if it makes you feel like you’re experiencing physiological anxiety, then it’s obviously a model of human anxiety right? Well what about the psychological components? People with GAD often have a hypervigilance to threat, even when there is nothing threatening around. Additionally, their attention to negative stimuli is increased, even in the presence of other emotional content. Anxious sufferers also interpret ambiguous information as potentially dangerous or threatening. Can the CO2 model can tap into some of these psychological components that are common in GAD?

To address this, one study found that the inhalation of 7.5% CO2 caused quicker eye-movements to be made towards threatening stimuli. Another study found that CO2 caused attention to reflect a hyper vigilance to threatening information. Otherresearch in preparation has found that people were worse at correctly identify emotional faces during CO2. Lastly, Cooper et al. (2013) found that CO2 caused people to interpret ambiguous information in CCTV footage as threatening. These findings support the 7.5% CO2 model affecting psychological processes similar to those in GAD.

Great! So the model seems to be similar to the experience of GAD, what next? Well, what’s also quite fascinating is that if we have a model for anxiety, we could predict how people will behave in situations like sport, musical performances, decision-making, medical and security services etc – behaviours that can induce feelings of anxiety or be affected by anxiety, even in those without a disorder. Understanding how people will behave in stressful situations might help improve performances in the future.

The CO2 model has been used to investigate this. Attwood et al. (2013) found that 7.5% CO2 impaired the ability to match pairs of faces, a finding which has tremendous implications for military and forensic settings (e.g., border crossings and proof of sale purchases like alcohol and tobacco). More recently, we also found that the inhalation of 7.5% CO2 impairs the ability to remember faces that have previously been seen. Importantly, ‘witnesses’ did not report lower confidence of their choices despite this impaired ability, which has implications for the judicial system (e.g., courtrooms and line-ups).

Upcoming research has suggested that CO2 impairs decision-making on a gambling task, by making people choose more exploratory decisions which in turn causes less money earned. Other research has suggested that the CO2 causes excessive force production which could affect military, surgical and sporting behaviours. The same research also suggested that people speed up when asked to tap in time with a metronome, which could detriment musical performances and any task that requires accurate bodily timing. Together, this research shows that the inhalation of 7.5% CO2 may be a useful tool for examine how anxiety may affect behaviours.

Mask
The amount of Bane and Darth Vader impressions I got from participants was staggering – “It would be extremely anxious…, for you”

By now you should be getting the picture that a) the CO2 model is good for inducing anxiety and b) that I am incredibly biased in favouring this model. But I think there are good reasons to endorse this stance. Many previous studies that induce anxiety are time limited, meaning that ‘anxiety’ may only affect certain stages of the task. Other studies only produce one single ‘hit’ to cause anxiety (e.g., one phobic stimuli, one bodily stressor), which may not be characteristic of anxiety as a whole. However, one anxiety inducer that I think is quite neat is the threat of electric shock. Threatening people with electric shock is a great way to induce anxiety but in some experiments, the shock doesn’t actually come, so people quickly learn that there is no threat and thereby no longer remain anxious, which is a problematic for anxiety research.

The CO2 model is not without its flaws. Tasks can only be conducted within the 20 minute inhalation window. That said, there is no limit to how many times someone can be CO2’d. Practically, people may decide they no longer want to feel anxious during the inhalation and so drop out, but this is likely to be a problem in anxiety research generally. Perhaps most importantly, whilst we have conducted numerous CO2 experiments, we are still unsure exactly how the model works on all attentional and behavioural mechanisms. Future research is looking at how the CO2 model affects the brain, and our eye-movements. There is also research that has explored psychological interventions, such as mindfulness training, and whether this can reduce some of the symptoms brought on by the CO2 inhalation. It’ll also be really interesting to see whether the model can be utilised as a training tool for people who need to perform under anxious conditions. Research has shown that practising under conditions of anxiety can help improve performance at a later stage and so the next step would be to see if people can perform better in real life anxious situations, if they’ve practised on the CO2 model first.

In summary, the CO2 model seems to be a reliable way to induce anxiety that can impact on both cognition and behaviour. The model is validated by a wealth of research showing its similarity to GAD. Although the model is not perfect for inducing anxiety, it is one of the more promising tools we currently have, and subsequent research should continue to use the model as a viable probe for exploring cognition and behaviour under anxiety.

The effect of smoking-free psychiatric hospitals on smoking behaviour: more evidence needed

By Olivia Maynard @OliviaMaynard17 

This blog originally appeared on the Mental Elf site on 18th May 2015.

One in three people with mental health illnesses in the UK smoke, as compared with one in five of the general population. In addition, smokers with mental illnesses smoke more heavily, are more dependent on nicotine and are less likely to be given help to quit smoking. As a result, they are more likely to suffer from smoking-related diseases, and on average die 12-15 years earlier than the general population.

Since July 2008, mental health facilities in England have had indoor smoking bans. However, NICE guidelines recommend that all NHS sites, including psychiatric hospitals become completely smoke-free, a recommendation previously examined by the Mental Elf.

This NICE recommendation has been criticised by those who argue that:

  1. Tobacco provides necessary self-medication for the mentally ill;
  2. Smoking cessation interferes with recovery from mental illness;
  3. Smoking cessation is the lowest priority for those with mental illnesses;
  4. People with mental illnesses are not interested in quitting;
  5. People with mental illness cannot quit smoking.

Many people argue that forcing people to quit smoking when they are having an acute mental health episode is tantamount to abuse.

Judith Prochaska, a researcher at Stanford University, has previously addressed each of these arguments (she calls them ‘myths’) (Prochaska, 2011). The abridged summary of the evidence surrounding myths 1, 2 and 3 is that:

  1. Smoking actually worsens mental health outcomes; in fact, the argument that nicotine provides self-medication is one which has been promoted by the tobacco industry itself;
  2. Smoking cessation does not exacerbate mental health outcomes;
  3. Smoking cessation should be a high priority, given that mental health patients are much more likely to die from tobacco-related disease than mental illness.

These are interesting and important arguments and more evidence surrounding them is also available here (Prochaska, 2010).

However, in this blog post I focus on ‘myths’ 4 and 5, drawing on a recent systematic review investigating the impact of a smoke-free psychiatric hospitalisation on patients’ motivations to quit (myth 4) and smoking behavior (myth 5) (Stockings et al., 2014).

This systematic review brings together mostly cross-sectional studies that look at the impact that smoke-free hospitals have on psychiatric inpatients who smoke.

Methods and results

Stockings and colleagues searched for studies examining changes in patients’ smoking-related behaviours, motivation and beliefs either during or following an admission to an adult inpatient psychiatric facility.

Study characteristics

Fourteen studies matched these inclusion criteria, two of which were conducted in the UK. The majority of the studies used a cross-sectional design and none were randomised controlled trials. The studies were all quite different, with the number of participants ranging from 15-467 and the length of admission ranging from 1-990 days. Crucially, the type of smoking ban varied considerably between the studies, so I’ll consider these separately.

Facilities with complete smoking bans

Six studies were conducted in facilities with complete bans. All of these offered nicotine dependence treatment, including nicotine replacement therapy (NRT) or brief advice.

  • Only one of these statistically assessed smoking behaviour, finding that cigarette consumption was lower during admission compared with prior to admission.
  • Three studies assessed smoking behaviour after discharge, finding that the majority of patients resumed smoking within five days. However, there was some evidence from the two larger studies that smoking prevalence was still lower at two weeks and three months post-discharge compared with prior to admission.
  • The one study to statistically assess smoking-related beliefs and motivations found that patients expected to be more successful at quitting following discharge compared with at admission. Higher doses of NRT were related to higher expectations of success.

Facilities with incomplete bans

Eight studies were conducted in facilities with incomplete bans. 

  • Four banned smoking indoors and all of these offered nicotine dependence treatment:
    • Only one of these statistically assessed smoking behaviour, finding that quit attempts increased from 2.2% when smoking was permitted in specific rooms, to 18.4% after the ban.
    • One study that assessed smoking prevalence post-discharge found that all participants (n = 15) resumed smoking.
    • One study found that participants expected to be more successful in smoking cessation post-discharge as compared with at admission.
  • Three allowed smoking in designated rooms, with no nicotine dependence treatment:
    • There were mixed results among the two studies which assessed smoking prevalence during admission.
    • Compared with at admission, there was some evidence of increased motivation to quit smoking.
  • One restricted smoking to five pre-determined intervals per day, with no nicotine dependence treatment:
    • Motivation to quit was lower at discharge compared with at admission.

This review suggests that complete bans are the most effective at encouraging smoking cessation and that NRT or brief advice are crucial.

Conclusions

The authors concluded that:

Smoke-free psychiatric hospitalisation may have the potential to impact positively on patients’ smoking behaviours and on smoking-related motivation and beliefs.

Strengths and limitations

The fourteen studies included in this review were all quite different from each other and had a number of limitations including:

  • Small sample sizes;
  • Incomplete reporting of key outcomes;
  • Failure to use controlled, experimental research designs;
  • Differences in the types of smoking bans in place;
  • Inconsistent provision of nicotine dependence treatment.

These key differences and limitations prevented statistical examination of the results as a whole. This means that making firm conclusions is difficult. There is clearly a need for more research in this area.

This area of research is far from complete, so we cannot make any firm conclusions about smoke-free psychiatric hospitals at this stage.

Summary

There is evidence that people with mental illnesses are interested in quitting smoking (myth 4) and that they are able to (myth 5). However, we still need more studies to examine these questions with well-powered (i.e. large sample sizes), high-quality (i.e., experimental) research designs.

The evidence presented in this systematic review suggests that complete bans are the most effective at encouraging smoking cessation and that the provision of nicotine dependence treatment, such as NRT or brief advice, is also crucial.

Although a handful of the studies assessed smoking behaviour after discharge, none of the facilities viewed this as an important outcome. Given the high level of smoking-related disease among those with mental health illnesses, ensuring that individuals remain abstinent from smoking after discharge is important for the continuing good health of these individuals.

Importantly, none of the studies in this review explored the impact of smoke-free legislation on mental health outcomes. Although the evidence suggests that smoking cessation actually improves mental health outcomes, future research should continue to examine this relationship.

Over to you

Do you have a mental health illness yourself, or support someone who does? Do you work with people with mental health illnesses? Should psychiatric hospitals become smoke-free?

We'd love to hear your views about this systematic review and more generally on this often emotive topic. Please use the comment box below to share your knowledge and experience.

Links

Primary paper

Stockings EA. et al (2014) The impact of a smoke-free psychiatric hospitalization on patient smoking outcomes: a systematic review. Aust NZ J Psychiatry 2014 May 12;48(7):617-633. [PubMed abstract]

Other references

Prochaska, J. J. (2010). Failure to treat tobacco use in mental health and addiction treatment settings: A form of harm reduction? Drug and Alcohol Dependence, 110(3), 177-182. doi: http://dx.doi.org/10.1016/j.drugalcdep.2010.03.002

Prochaska, J. J. (2011). Smoking and Mental Illness — Breaking the Link. New England Journal of Medicine, 365(3), 196-198. doi: doi:10.1056/NEJMp1105248

 

Promoting smoking cessation in people with schizophrenia

by Meg Fluharty @MegEliz_

This blog originally appeared on the Mental Elf site on 14th May 2015.

shutterstock_276469196People with schizophrenia have a considerable reduction in life expectancy compared to the general population (Osborn et al 2007; Lawrence et al 2013). A number of factors lead to cardiovascular disease (Osborn et al 2007; Lawrence et al 2013; Nielsen et al, 2010) one of which is smoking.People with schizophrenia smoke at much higher rates and more heavily than the general population (Ruther et al 2014, Hartz et al 2014).Stubbs et al (2015) carried out a review to assess the current cessation interventions available for individuals with serious mental illnesses and establish if any disparities currently lie in the delivery of these interventions.60% of premature deaths in people with schizophrenia are due to medical conditions including heart and lung disease and infectious illness caused by modifiable risk factors such as smoking, alcohol consumption and intravenous drug use.

Methods

The authors searched several electronic databases (Embase, PubMed, and CINAHL) using the following keywords: “smoking cessation”, “smoking”, “mental illness”, “serious mental illness” and “schizophrenia.”

Studies were eligible if they included individuals with a DSM or ICD-10 diagnosis of schizophrenia and reported a cessation intervention.

The authors included both observational and intervention studies as well as systematic-reviews and meta-analyses.

This paper is a clinical overview (not a systematic review) of a wide range of different studies relevant to smoking cessation in schizophrenia and other severe mental illnesses.

Results

Pharmacological interventions

 Non-pharmacological interventions

  • The evidence for E-cigarettes was inconsistent, with the authors concluding more evidence was needed before clinicians consider e-cigarettes within mental health settings. Additionally, e-cigarette use in people with schizophrenia should have side effects monitored closely.
  • There was little research on exercise in schizophrenia, but one study found a reduction in tobacco consumption.

Behavioural approaches

  • Behavioural approaches such as offering smoking cessation advice alongside pharmacotherapy have been found successful with no harmful side effects.

Disparities in smoking cessation interventions

  • An investigation of GP practices found individuals with schizophrenia did not receive smoking cessation interventions proportional to their needs.

Support while quitting

  • People with serious mental illnesses experience more severe withdrawal symptoms compared to the general population, and therefore should be given extra support during cessation attempts (Ruther et al 2014).
  • Psychiatrists should re-evaluate choice and the dose of antipsychotic medicine being given after abstinence from smoking is achieved. This is because of nicotine’s metabolic influence on antipsychotic medicine.
  • Alongside smoking cessation, exercise should be promoted among people with schizophrenia to combat weight gain and the increased metabolic risk.

People with serious mental illness are likely to need more support when quitting smoking, because they generally suffer more severe withdrawal symptoms.

Discussion

In light of the findings, the authors suggest several steps for clinicians to help people with schizophrenia quit smoking:

  • Patients’ current smoking status, nicotine dependency, and previous quit attempts should be assessed. Assessing nicotine dependency will help predict the level of withdrawal symptoms the patient is likely to experience upon quitting.
  • Cessation attempts are best timed when the patient is stable. Patients should be thoroughly advised on the process needed to give them the best chance of quitting smoking, Thus, allowing the patient to formulate their quit plan and take ownership of their own quit attempt.
  • Cessation counselling should be provided, particularly what to expect with withdrawal symptoms (e.g. depression and restlessness) and how to cope.
  • Pharmacological support should be provided (Bupropion recommended) when there is even mild tobacco dependence.
  • Clinicians should carefully monitor patients’ medication and fluxions in weight for a minimum of 6 months after quitting smoking, and when needed recommended exercise to combat weight gain.

The authors provide a well laid out summary of their findings, alongside some excellent suggestions for clinicians to consider on how to best promote cessation in practice.

However, it should be stressed that Stubbs et al (2015) only searched for high qualities studies and provided an overview of them –  this is not a systematic review or meta-analysis. They included several types of studies, set little inclusion criteria and listed no exclusion criteria. This is quite different from a systematic review with a meta-analysis, which would set stricter predefined search and eligibility criteria, which identify a set of studies all tackling the same question, thus allowing for the statistical pooling and comparison of these studies.

This is not a systematic review, but it does offer some very useful practical advice for clinicians who are trying to promote smoking cessation.

Links

Primary paper

Stubbs B, Vancampfort D, Bobes J, De Hert M, Mitchell AJ. How can we promote smoking cessation in people with schizophrenia in practice? A clinical overview. Acta Psychiatrica Scandinavica. 2015: 1-9. 
[PubMed abstract]

Other references

Osborn DPJ, Levy G, Nazareth I, Petersen I, Islam A, King MB. Relative risk of cardiovascular and cancer mortality in people with severe mental illness from the United Kingdom’s General Practice Research Database. Arch Gen Psychiatry 2007;64:242–249.

Lawrence D, Hancock KJ, Kisely S. The gap in life expectancy from preventable physical illness in psychi- atric patients in Western Australia: retrospective analysis of population based registers. BMJ 2013;346: f2539-f.

Nielsen RE, Uggerby AS, Jensen SOW, McGrath JJ. Increasing mortality gap for patients diagnosed with schizophrenia over the last three decades – a Danish nationwide study from 1980 to 2010. Schizophr Res 2013;146:22–27.  
[PubMed abstract]

Ruther T, Bobes J, de Hert M et al. EPA guidance on tobacco dependence and strategies for smoking cessation in people with mental illness. Eur Psychiatry 2014;29:65– 82. 
[PubMed abstract]

Hartz SM, Pato CN, Medeiros H et al. Comorbidity of severe psychotic disorders with measures of substance use. JAMA Psychiatry 2014;71:248–254.

 

Motivational interviewing may help people quit smoking, but more research is needed

by Olivia Maynard @OliviaMaynard17

This blog originally appeared on the Mental Elf site on 30th April 2015.

Both pharmacological (i.e. bupropion and varenicline) and non-pharmacological (i.e. brief advice from physicians) interventions have been shown to be effective in assisting people to stop smoking. Evidence also suggests that combining both these types of interventions can help people to stop smoking and both are considered equally important in quitting success.

Motivational interviewing (MI) is a counselling-based intervention which focusses on encouraging behaviour change by helping people to explore and resolve their uncertainties about changing their behaviour. MI avoids an aggressive or confrontational approach and aims to increase the self-belief of the individual. MI was initially developed to treat alcohol abuse, but may be helpful in encouraging smoking cessation.

In a recent Cochrane systematic review, Lindson-Hawley and colleagues from the Cochrane Tobacco Addiction Group aimed to determine whether or not MI is an effective method of smoking cessation (Lindson-Hawley et al, 2015).

Motivational interviewing focusses on encouraging behaviour change by helping people to explore and resolve their uncertainties about changing their behaviour.

Methods

The authors searched online databases and studies were included if:

  • Participants were tobacco users and were not pregnant or adolescents;
  • The intervention was based on MI techniques;
  • The control group received brief advice or usual care;
  • Some monitoring of the quality of the MI intervention was included;
  • Smoking abstinence was reported at least 6 months after the start of the programme.

The main outcome measure was smoking abstinence, using the most rigorous definition of abstinence for each study. Biochemically-validated measures of abstinence (i.e., carbon monoxide breath testing or saliva cotinine samples) were also used where available. Those participants lost to follow-up were considered to be continuing to smoke.

Results across studies were combined in a meta-analysis.

Results

Twenty eight studies published between 1997 and 2014 were found to match the strict inclusion criteria.

The total dataset included over 16,000 participants and studies varied in:

  • The length of the MI sessions (ranging from 10 to 60 minutes)
  • The number of sessions (one to six sessions)
  • Who the sessions were delivered by (primary care physicians, hospital clinicians, nurses or counsellors)

Some of the main findings included:

  • A modest (26%) increase in quitting among those receiving MI as compared with control (although the true value is likely to lie between 16-36%).
  • Sub-group analyses found that:
    • MI delivered by primary care physicians increased the likelihood of successful quitting by 349% (53-794%) as compared with control
    • When it was delivered by counsellors, quit rates increased by only 25% as compared with control
    • MI delivered by nurses was not found to be more effective than control
  • Shorter sessions (less than 20 minutes) increased the chances of quitting relative to control by 69%, as compared with longer sessions, which only increased the chances of quitting by 20%.
  • There was little difference in the likelihood of quitting between single MI sessions (26%) and multiple sessions (20%) as compared with control.
  • There was little difference between MI delivered face-to-face as compared with via the telephone only.
  • There was no evidence for a difference for MI delivered to smokers who were motivated to quit as compared with those with low levels of motivation.

Compared with brief advice or usual care, motivational interviewing yielded a significant increase in quitting. However, study quality means that these results should be interpreted with caution.

Strengths

This review adds 14 additional studies to a previous review conducted in 2010. The addition of these new studies altered the results of the original review very little, providing strong support for the validity of these findings.

Two previous systematic reviews have also examined the effectiveness of MI for smoking cessation, observing modest positive effects of MI (Heckman et al., 2010, Hettema and Hendricks, 2010), although these studies used a broader inclusion criteria than used here and therefore may have underestimated the effects of MI.

The majority of studies included in this review adequately reported their design and methods. Some studies did not report information about blinding of the outcome assessment or how participants were allocated to conditions. However, sensitivity analyses indicated that these factors did not influence the findings of the review.

Limitations

The authors report some evidence for publication bias, such that studies reporting a positive effect of MI were more likely to be published, potentially compromising the results of this systematic review.

Eight of the 24 studies did not use biochemically-validated measures of abstinence. When analyses excluded these studies, the size of the beneficial effect of MI increased. Future research should use the biochemically-validated abstinence measures so as to ensure that smoking cessation is reliably reported.

Conclusions

These results indicate that MI is more effective at promoting smoking cessation than usual care or brief advice, although the effect is modest.

Some components of MI counselling appear to increase the effectiveness of MI for smoking cessation, including delivery by a primary care physician. The reviewers suggest that physicians may be better placed to use the MI approach given their established rapport with the patient. However, this effect is based on only two studies and therefore the importance of physician delivery should not be overstated.

Shorter sessions and fewer follow-ups were also found to be more effective than longer sessions with more follow-up sessions. One explanation given by the authors is that a single session is enough to motivate someone to quit smoking. Prolonging the time before the quit date may mean participants lose focus on their goal to stop smoking.

While MI seems to be effective in promoting smoking cessation, future research should continue to explore the components of MI which optimise the success of this intervention. The relationship between non-pharmacological interventions such as MI and pharmacological interventions should also be considered.

This review confirms that motivational interviewing for smoking cessation is supported by moderate level evidence.

Links

Primary paper

Lindson-Hawley N, Thompson TP, Begh R. Motivational interviewing for smoking cessation. Cochrane Database of Systematic Reviews 2015, Issue 3. Art. No.: CD006936. DOI: 10.1002/14651858.CD006936.pub3.

Other references

Heckman, C. J., Egleston, B. L. & Hofman, M. T. (2010). Efficacy of motivational interviewing for smoking cessation: a systematic review and meta-analysisTobacco Control, 19, 410-416.

Hettema, J. E. & Hendricks, P. S. (2010). Motivational interviewing for smoking cessation: A meta-analytic review. Journal of Consulting and Clinical Psychology, 78, 868-884. [DARE summary]

 

E-cigarettes and teenagers: cause for concern?

By Marcus Munafo @MarcusMunafo 

This blog originally appeared on the Mental Elf site on 20th April 2015

shutterstock_208797175

Electronic cigarettes (e-cigarettes) are a range of products that deliver vapour which typically contains nicotine (although zero-nicotine solutions are available). The name is misleading because some products are mechanical rather than electronic, and because they are not cigarettes. While first-generation products were designed to be visually similar to cigarettes, second- and third-generation products are visually distinctive and come in a variety of shapes and sizes. Critically, these products do not contain tobacco, and are therefore intended to deliver nicotine without the harmful constituents of tobacco smoke.

There has been rapid growth in the popularity and use of e-cigarettes in recent years, accompanied by growth in their marketing. At present they are relatively unregulated in many countries, although countries are introducing various restrictions on their availability and marketing. For example, a ban on sales to under-18s will be introduced in England and Wales in 2015.

These products have stimulated considerable (and often highly polarized) debate in the public health community. On the one hand, if they can support smokers in moving away from smoking they have enormous potential to reduce the harms associated with smoking. On the other hand, the quality and efficacy of these products remains largely unknown and is likely to be highly variable, and data on the long-term consequences of their use (e.g., the inhalation of propylene glycol vapour and flavourings) is lacking. There is also a concern that these products may re-normalise smoking, or act as a gateway into smoking.

E-cigarettes and teenagers: a gateway

Methods

This study reports the results of a survey conducted by Trading Standards in the North-West of England on 14 to 17 year-old students. The survey focuses on tobacco-related behaviours, and a question on access to e-cigarettes was introduced in 2013. This enabled identification of factors associated with e-cigarette use among people under 18 years old.

The study used data from the 5th Trading Standards North West Alcohol and Tobacco Survey among 14 to 17 year-olds in North-West England, conducted in 2013. The questionnaire was made available to secondary schools across the region through local authority Trading Standards departments, and delivered by teachers during normal school lessons. Compliance was not recorded, and the sample was not intended to be representative but to provide a sample from a range of communities.

The survey consisted of closed, self-completed questions covering sociodemographic variables, alcohol consumption and tobacco use. There were also questions on methods of access to alcohol and tobacco, as well as involvements in violence when drunk. E-cigarette access was assessed by the question “Have you ever tried or purchased e-cigarettes?”.

The study used data from the North West Alcohol and Tobacco Survey, which asked 14 to 17 year-olds lots of questions about their substance use behaviour.

Results

A total of 114 schools participated, and the total dataset included 18,233 participants, of which some were removed for missing data or spoiled questionnaires (e.g., unrealistic answers), so that the final sample for analysis was 16,193. Some of the main findings of the survey included:

  • In total, 19.2% of respondents reported having accessed e-cigarettes, with this being higher in males than females, and increasing with age and socioeconomic deprivation.
  • Level of e-cigarette access was higher among those who had smoked, ranging from 4.9% of never smokers, through 50.7% of ex-smokers, 67.2% of light smokers and 75.8% of heavy smokers.
  • E-cigarette use was associated with alcohol use, with those who drank alcohol more likely to have accessed e-cigarettes than non-drinkers, as well as with smoking by parents/guardians.

Nearly 1 in 5 of the young people surveyed

Conclusion

The authors conclude that their results raise concerns around the access to e-cigarettes by children, particularly among those who have never smoked cigarettes. They argue that their findings suggest that the children who access e-cigarettes are also those most vulnerable to other forms of substance use and risk-taking behavior, and conclude with a call for the “urgent need for controls on e-cigarette sales to children”. The study has some important strengths, most notably its relatively large size, and ability to determine which respondents were living in rich and poor areas.

Understanding the determinants of e-cigarette use, and patterns of use across different sections of society, is important to inform the ongoing debate around their potential benefits and harms. However, it is also not clear what this study tells us that was not already known. The results are consistent with previous, larger surveys, which show that young people (mostly smokers) are trying e-cigarettes. Critically, these previous surveys have shown that while some young non-smokers are experimenting with electronic cigarettes, progression to regular use among this group is rare. Product labels already indicate that electronic cigarettes are not for sale to under-18s, and in 2014 the UK government indicated that legislation will be brought forward to prohibit the sale of electronic cigarettes to under-18s in England and Wales (although at present no such commitment has been made in Scotland).

This study does not add anything significant to our knowledge about e-cigarettes.

Limitations

There are a number of important limitations to this study:

  • As the authors acknowledge, this was not meant to be a representative survey, and the results can therefore not be generalized to the rest of the north-west of England, let alone the wider UK.
  • As a cross-sectional survey it was not able to follow up individual respondents, for example to determine whether never smokers using e-cigarettes progress to smoking. This problem is common to most e-cigarette surveys to date.
  • The question asked does not tell us whether the participants actually used the e-cigarette they accessed, or what liquid was purchased with the e-cigarette (e.g., the concentration of nicotine). Zero-nicotine solutions are available, and there is evidence that these solutions are widely used by young people.
  • The results are presented confusingly, with numerous percentages (and percentages of percentages) reported. For example, 4.9% of never smokers reported having accessed e-cigarettes, but this is less than 3% of the overall sample (fewer than 500 out of 16,193 respondents). This is potentially an important number to know, but is not reported directly in the article.

Summary

This study does not add much to what is already known. Young people experiment with substances like tobacco and alcohol, and as e-cigarettes have become widely available they have begun to experiment with these too. However, to describe electronic cigarette use as “a new drug use option” and part of “at-risk teenagers’ substance using repertoires” is probably unnecessarily alarmist, given that:

  1. There is evidence that regular use of e-cigarettes among never smokers is negligible
  2. There is little evidence of e-cigarette use acting as a gateway to tobacco use
  3. The likelihood that e-cigarette use will be associated with very low levels of harm

It's alarmist to suggest

Links

Primary reference

Huges K, Bellis MA, Hardcastle KA, McHale P, Bennett A, Ireland R, Pike K. Associations between e-cigarette access and smoking and drinking behaviours in teenagers. BMC Public Health 2015; 15: 244. doi: 10.1186/s12889-015-1618-4

Other references

Young Persons Alcohol and Tobacco Survey 2013. Lancashire County Council’s Trading Standards.