CBT for substance misuse in young people

by Eleanor Kennedy @Nelllor_

This blog originally appeared on the Mental Elf site on 26th May 2015.

According to 2011 figures for the UK, over 11% of people seeking treatment for substance use were aged between 15-19 years old (Emcdda.europa.eu, 2015).

Cognitive-Behavioural Therapy (CBT) is a treatment that uses cognitive and behavioural techniques to target drug-related beliefs and to alter how these beliefs impact on actions. The individualised nature of CBT may especially be beneficial for young people whose needs differ from those of an adult due to the developmental stage of adolescence.

The factors that moderate the success of CBT treatment among young people are not well-defined. The authors of the current review aimed “to assess the effectiveness of CBT for young people in outpatient non-opioid drug use and to explore any factors that may moderate outcomes” (Filges et al 2015). Non-opioid drugs refers to cannabis, cocaine, ecstasy and amphetamines.

The non-opioid drugs covered by this review were cannabis, cocaine, ecstasy and amphetamines.

Methods

Numerous online databases were searched and studies were included if:

  • The study design was either a randomised, quasi-randomised or non-randomised controlled trial (RCT, QRCT or NRCT)
  • Participants were aged 13-20 years old
  • Participants were enrolled in outpatient treatment for non-opioid drug treatment
  • CBT was the primary intervention, although CBT interventions with an add-on component, such as motivational interviewing, were included

The primary outcome measure was abstinence or reduction of drug use as measured by biochemical test, self-report estimates or psychometric scales. Secondary outcomes of interest were social and family functioning; education or vocational involvement; retention; risk behaviour such as crime rates.

Two separate meta-analyses were conducted.

Seven

Results

Study characteristics

Seven studies, reported in seventeen papers, were included in the review. All seven studies were RCTs; six were conducted in the US and one was carried out in The Netherlands. The seven studies were quite different; sample sizes ranged from 43 to 320 participants and the gender of participants enrolled ranged from 54% to 81% male.

CBT was compared to a range of interventions, namely adolescent community reinforcement approach; multidimensional family therapy; chestnut’s Bloomington outpatient program; interactional treatment; psychoeducational substance abuse treatment and functional family therapy. Three evaluated CBT only, while four studies looked at CBT with an add-on component including Assertive Continuing Care, Motivational Enhancement Intervention or Integrated Family therapy.

The studies also differed in terms of CBT delivery; one study provided individual CBT, two had group CBT session, one study included family sessions alongside peer-group therapy, another study had family sessions at the beginning and end of the treatment period, while another study provided a home-based continuing care approach.

Main findings

Separate meta-analyses were conducted on the four studies that looked at CBT with an add-on component and on the three studies that evaluated CBT without an add-on component. Analyses had differing numbers of included studies depending on the variable in question.

Outcome measures were evaluated in three different intervals: short term (beginning of treatment to < 6 months later); medium term (6 months to < 12 months after beginning treatment) and long term (12 months + after the beginning of treatment).

Drug use

  • Overall, studies that reported on the effects of CBT with an add-on component did not show a reduction of drug use relative to the comparison treatment in the:
    • Short term (SMD 0.14 95% CI -0.64 to 0.36);
    • Medium term (SMD -0.06 95% CI -0.44 to 0.32) or
    • Long term (SMD -0.15 95% CI -0.36 to 0.06)
  • The studies that evaluated CBT without an add-on component were not found to be significantly more effective than their respective comparison treatment in the
    • Short term (SMD -0.13 95% CI -0.68 to 0.42);
    • Medium term (SMD 0.08 95% CI -0.48 to 0.31) or
    • Long term (SMD 0.02 95% CI -0.48 to 0.52)

Recovery

  • Studies that reported on CBT with an add-on component showed a statistically significant relative effect on recovery status in the long term (OR = 0.63 (95% CI 0.39 to 1.00)
  • Only one study with CBT without an add-on component reported recovery status, this was not statistically significant (OR = 2.89 (95% CI 0.72 to 11.56)

Secondary outcomes

  • CBT with an add-on component was not found to have a significant relative effect on retention or risk behaviour
  • CBT without an add-on component also did not have a significant relative effect on psychological problems, family problems, school problems, retention or risk behaviour

Unfortunately, this review does not tell us whether CBT is more or less effective than other treatments for substance misuse in young people.

Strengths and limitations

The review had some strengths. A large number of databases were searched and there were no language restrictions on the literature included. Additionally, all included studies were RCTs with none of the studies classified as having a very high risk of bias.

The small number of studies included in this review is not problematic by itself, however, the choice to carry out separate meta-analyses based on the inclusion of an add-on component to the CBT, reduced the power of the analyses even further.

Additionally, caution must be taken when interpreting the findings of the meta-analyses as the studies were all very different. There was significant heterogeneity between the studies in all but one analysis and also many of the analyses were conducted on only two studies.

The qualitative review of the paper was weak, it was merely a description of the included studies without an evaluation of the differences between them.

Conclusions

The review is inconclusive in terms of CBT being more or less effective than other therapies, as the authors themselves note. No qualitative comparisons were drawn between the studies, this may have been more beneficial given the array of differences between all seven studies.

The review did not consider any factors that may moderate the efficacy of CBT as a treatment for non-opioid drug use and the authors suggest that future studies should include more information about the heterogeneity of treatment effects so that this can be explored.

Given the differences between the included studies, a meta-analysis was probably not appropriate and a good quality systematic review may have been more useful.

More qualitative analysis of the included studies may have shed more light on this discussion.

Links

Primary paper

Filges T, Knudsen ASD, Svendsen MM, Kowalski K, Benjaminsen L, Jørgensen AMK. Cognitive-Behavioural Therapies for Young People in Outpatient Treatment for Non-Opioid Drug Use: A Systematic Review. Campbell Systematic Reviews 2015:3 10.4073/csr.2015.3

Other references

Emcdda.europa.eu, (2015). EMCDDA | European Monitoring Centre for Drugs and Drug Addiction — information on drugs and drug addiction in Europe. [online] Available at: http://www.emcdda.europa.eu/ [Accessed 15 May 2015].

– See more at: http://www.nationalelfservice.net/mental-health/substance-misuse/cbt-for-substance-misuse-in-young-people/#sthash.xWsGpoWk.dpuf

The effect of smoking-free psychiatric hospitals on smoking behaviour: more evidence needed

By Olivia Maynard @OliviaMaynard17 

This blog originally appeared on the Mental Elf site on 18th May 2015.

One in three people with mental health illnesses in the UK smoke, as compared with one in five of the general population. In addition, smokers with mental illnesses smoke more heavily, are more dependent on nicotine and are less likely to be given help to quit smoking. As a result, they are more likely to suffer from smoking-related diseases, and on average die 12-15 years earlier than the general population.

Since July 2008, mental health facilities in England have had indoor smoking bans. However, NICE guidelines recommend that all NHS sites, including psychiatric hospitals become completely smoke-free, a recommendation previously examined by the Mental Elf.

This NICE recommendation has been criticised by those who argue that:

  1. Tobacco provides necessary self-medication for the mentally ill;
  2. Smoking cessation interferes with recovery from mental illness;
  3. Smoking cessation is the lowest priority for those with mental illnesses;
  4. People with mental illnesses are not interested in quitting;
  5. People with mental illness cannot quit smoking.

Many people argue that forcing people to quit smoking when they are having an acute mental health episode is tantamount to abuse.

Judith Prochaska, a researcher at Stanford University, has previously addressed each of these arguments (she calls them ‘myths’) (Prochaska, 2011). The abridged summary of the evidence surrounding myths 1, 2 and 3 is that:

  1. Smoking actually worsens mental health outcomes; in fact, the argument that nicotine provides self-medication is one which has been promoted by the tobacco industry itself;
  2. Smoking cessation does not exacerbate mental health outcomes;
  3. Smoking cessation should be a high priority, given that mental health patients are much more likely to die from tobacco-related disease than mental illness.

These are interesting and important arguments and more evidence surrounding them is also available here (Prochaska, 2010).

However, in this blog post I focus on ‘myths’ 4 and 5, drawing on a recent systematic review investigating the impact of a smoke-free psychiatric hospitalisation on patients’ motivations to quit (myth 4) and smoking behavior (myth 5) (Stockings et al., 2014).

This systematic review brings together mostly cross-sectional studies that look at the impact that smoke-free hospitals have on psychiatric inpatients who smoke.

Methods and results

Stockings and colleagues searched for studies examining changes in patients’ smoking-related behaviours, motivation and beliefs either during or following an admission to an adult inpatient psychiatric facility.

Study characteristics

Fourteen studies matched these inclusion criteria, two of which were conducted in the UK. The majority of the studies used a cross-sectional design and none were randomised controlled trials. The studies were all quite different, with the number of participants ranging from 15-467 and the length of admission ranging from 1-990 days. Crucially, the type of smoking ban varied considerably between the studies, so I’ll consider these separately.

Facilities with complete smoking bans

Six studies were conducted in facilities with complete bans. All of these offered nicotine dependence treatment, including nicotine replacement therapy (NRT) or brief advice.

  • Only one of these statistically assessed smoking behaviour, finding that cigarette consumption was lower during admission compared with prior to admission.
  • Three studies assessed smoking behaviour after discharge, finding that the majority of patients resumed smoking within five days. However, there was some evidence from the two larger studies that smoking prevalence was still lower at two weeks and three months post-discharge compared with prior to admission.
  • The one study to statistically assess smoking-related beliefs and motivations found that patients expected to be more successful at quitting following discharge compared with at admission. Higher doses of NRT were related to higher expectations of success.

Facilities with incomplete bans

Eight studies were conducted in facilities with incomplete bans. 

  • Four banned smoking indoors and all of these offered nicotine dependence treatment:
    • Only one of these statistically assessed smoking behaviour, finding that quit attempts increased from 2.2% when smoking was permitted in specific rooms, to 18.4% after the ban.
    • One study that assessed smoking prevalence post-discharge found that all participants (n = 15) resumed smoking.
    • One study found that participants expected to be more successful in smoking cessation post-discharge as compared with at admission.
  • Three allowed smoking in designated rooms, with no nicotine dependence treatment:
    • There were mixed results among the two studies which assessed smoking prevalence during admission.
    • Compared with at admission, there was some evidence of increased motivation to quit smoking.
  • One restricted smoking to five pre-determined intervals per day, with no nicotine dependence treatment:
    • Motivation to quit was lower at discharge compared with at admission.

This review suggests that complete bans are the most effective at encouraging smoking cessation and that NRT or brief advice are crucial.

Conclusions

The authors concluded that:

Smoke-free psychiatric hospitalisation may have the potential to impact positively on patients’ smoking behaviours and on smoking-related motivation and beliefs.

Strengths and limitations

The fourteen studies included in this review were all quite different from each other and had a number of limitations including:

  • Small sample sizes;
  • Incomplete reporting of key outcomes;
  • Failure to use controlled, experimental research designs;
  • Differences in the types of smoking bans in place;
  • Inconsistent provision of nicotine dependence treatment.

These key differences and limitations prevented statistical examination of the results as a whole. This means that making firm conclusions is difficult. There is clearly a need for more research in this area.

This area of research is far from complete, so we cannot make any firm conclusions about smoke-free psychiatric hospitals at this stage.

Summary

There is evidence that people with mental illnesses are interested in quitting smoking (myth 4) and that they are able to (myth 5). However, we still need more studies to examine these questions with well-powered (i.e. large sample sizes), high-quality (i.e., experimental) research designs.

The evidence presented in this systematic review suggests that complete bans are the most effective at encouraging smoking cessation and that the provision of nicotine dependence treatment, such as NRT or brief advice, is also crucial.

Although a handful of the studies assessed smoking behaviour after discharge, none of the facilities viewed this as an important outcome. Given the high level of smoking-related disease among those with mental health illnesses, ensuring that individuals remain abstinent from smoking after discharge is important for the continuing good health of these individuals.

Importantly, none of the studies in this review explored the impact of smoke-free legislation on mental health outcomes. Although the evidence suggests that smoking cessation actually improves mental health outcomes, future research should continue to examine this relationship.

Over to you

Do you have a mental health illness yourself, or support someone who does? Do you work with people with mental health illnesses? Should psychiatric hospitals become smoke-free?

We'd love to hear your views about this systematic review and more generally on this often emotive topic. Please use the comment box below to share your knowledge and experience.

Links

Primary paper

Stockings EA. et al (2014) The impact of a smoke-free psychiatric hospitalization on patient smoking outcomes: a systematic review. Aust NZ J Psychiatry 2014 May 12;48(7):617-633. [PubMed abstract]

Other references

Prochaska, J. J. (2010). Failure to treat tobacco use in mental health and addiction treatment settings: A form of harm reduction? Drug and Alcohol Dependence, 110(3), 177-182. doi: http://dx.doi.org/10.1016/j.drugalcdep.2010.03.002

Prochaska, J. J. (2011). Smoking and Mental Illness — Breaking the Link. New England Journal of Medicine, 365(3), 196-198. doi: doi:10.1056/NEJMp1105248

 

Promoting smoking cessation in people with schizophrenia

by Meg Fluharty @MegEliz_

This blog originally appeared on the Mental Elf site on 14th May 2015.

shutterstock_276469196People with schizophrenia have a considerable reduction in life expectancy compared to the general population (Osborn et al 2007; Lawrence et al 2013). A number of factors lead to cardiovascular disease (Osborn et al 2007; Lawrence et al 2013; Nielsen et al, 2010) one of which is smoking.People with schizophrenia smoke at much higher rates and more heavily than the general population (Ruther et al 2014, Hartz et al 2014).Stubbs et al (2015) carried out a review to assess the current cessation interventions available for individuals with serious mental illnesses and establish if any disparities currently lie in the delivery of these interventions.60% of premature deaths in people with schizophrenia are due to medical conditions including heart and lung disease and infectious illness caused by modifiable risk factors such as smoking, alcohol consumption and intravenous drug use.

Methods

The authors searched several electronic databases (Embase, PubMed, and CINAHL) using the following keywords: “smoking cessation”, “smoking”, “mental illness”, “serious mental illness” and “schizophrenia.”

Studies were eligible if they included individuals with a DSM or ICD-10 diagnosis of schizophrenia and reported a cessation intervention.

The authors included both observational and intervention studies as well as systematic-reviews and meta-analyses.

This paper is a clinical overview (not a systematic review) of a wide range of different studies relevant to smoking cessation in schizophrenia and other severe mental illnesses.

Results

Pharmacological interventions

 Non-pharmacological interventions

  • The evidence for E-cigarettes was inconsistent, with the authors concluding more evidence was needed before clinicians consider e-cigarettes within mental health settings. Additionally, e-cigarette use in people with schizophrenia should have side effects monitored closely.
  • There was little research on exercise in schizophrenia, but one study found a reduction in tobacco consumption.

Behavioural approaches

  • Behavioural approaches such as offering smoking cessation advice alongside pharmacotherapy have been found successful with no harmful side effects.

Disparities in smoking cessation interventions

  • An investigation of GP practices found individuals with schizophrenia did not receive smoking cessation interventions proportional to their needs.

Support while quitting

  • People with serious mental illnesses experience more severe withdrawal symptoms compared to the general population, and therefore should be given extra support during cessation attempts (Ruther et al 2014).
  • Psychiatrists should re-evaluate choice and the dose of antipsychotic medicine being given after abstinence from smoking is achieved. This is because of nicotine’s metabolic influence on antipsychotic medicine.
  • Alongside smoking cessation, exercise should be promoted among people with schizophrenia to combat weight gain and the increased metabolic risk.

People with serious mental illness are likely to need more support when quitting smoking, because they generally suffer more severe withdrawal symptoms.

Discussion

In light of the findings, the authors suggest several steps for clinicians to help people with schizophrenia quit smoking:

  • Patients’ current smoking status, nicotine dependency, and previous quit attempts should be assessed. Assessing nicotine dependency will help predict the level of withdrawal symptoms the patient is likely to experience upon quitting.
  • Cessation attempts are best timed when the patient is stable. Patients should be thoroughly advised on the process needed to give them the best chance of quitting smoking, Thus, allowing the patient to formulate their quit plan and take ownership of their own quit attempt.
  • Cessation counselling should be provided, particularly what to expect with withdrawal symptoms (e.g. depression and restlessness) and how to cope.
  • Pharmacological support should be provided (Bupropion recommended) when there is even mild tobacco dependence.
  • Clinicians should carefully monitor patients’ medication and fluxions in weight for a minimum of 6 months after quitting smoking, and when needed recommended exercise to combat weight gain.

The authors provide a well laid out summary of their findings, alongside some excellent suggestions for clinicians to consider on how to best promote cessation in practice.

However, it should be stressed that Stubbs et al (2015) only searched for high qualities studies and provided an overview of them –  this is not a systematic review or meta-analysis. They included several types of studies, set little inclusion criteria and listed no exclusion criteria. This is quite different from a systematic review with a meta-analysis, which would set stricter predefined search and eligibility criteria, which identify a set of studies all tackling the same question, thus allowing for the statistical pooling and comparison of these studies.

This is not a systematic review, but it does offer some very useful practical advice for clinicians who are trying to promote smoking cessation.

Links

Primary paper

Stubbs B, Vancampfort D, Bobes J, De Hert M, Mitchell AJ. How can we promote smoking cessation in people with schizophrenia in practice? A clinical overview. Acta Psychiatrica Scandinavica. 2015: 1-9. 
[PubMed abstract]

Other references

Osborn DPJ, Levy G, Nazareth I, Petersen I, Islam A, King MB. Relative risk of cardiovascular and cancer mortality in people with severe mental illness from the United Kingdom’s General Practice Research Database. Arch Gen Psychiatry 2007;64:242–249.

Lawrence D, Hancock KJ, Kisely S. The gap in life expectancy from preventable physical illness in psychi- atric patients in Western Australia: retrospective analysis of population based registers. BMJ 2013;346: f2539-f.

Nielsen RE, Uggerby AS, Jensen SOW, McGrath JJ. Increasing mortality gap for patients diagnosed with schizophrenia over the last three decades – a Danish nationwide study from 1980 to 2010. Schizophr Res 2013;146:22–27.  
[PubMed abstract]

Ruther T, Bobes J, de Hert M et al. EPA guidance on tobacco dependence and strategies for smoking cessation in people with mental illness. Eur Psychiatry 2014;29:65– 82. 
[PubMed abstract]

Hartz SM, Pato CN, Medeiros H et al. Comorbidity of severe psychotic disorders with measures of substance use. JAMA Psychiatry 2014;71:248–254.